报告题目66:Maximal domains of the $(\lambda,\mu)$-parameters to existence of entire positive solutions for singular quasilinear elliptic systems
报 告 人:周家正(巴西利亚大学)
会议时间:12月24日(周四),18:30-19:30
腾讯会议ID: 499 902 793,
https://meeting.tencent.com/s/hpCZDPDmgbwp
摘要:In this paper we establish maximal domains on the real parameters $\lambda,\mu>0$ to existence of $C^{1}(\mathbb{R}^{N})$-entire positive solutions for the quasilinear elliptic system$$\left\{\begin{array}{l}-\Delta_p u = \eta a(x)f_1(u) +\lambda b(x)g_1(u)h_1(v)~in ~ \mathbb{R}^N,\\-\Delta_p v = \theta c(x)f_2(v) + \mu d(x)g_2(v)h_2(u)~in~ \mathbb{R}^N,\\u, v > 0~in~ \mathbb{R}^N,~~ u(x), v(x) \stackrel{|x|\rightarrow\infty}{\longrightarrow} 0,\end{array}\right.
$$ where $\Delta_p$ is the $p-$Laplacian operator with $1 < p< N $ ($3\leq N$); $0<a, b, c, d\in C(\mathbb{R}^{N})$; either $\eta=\theta=1$ or $\eta=\lambda,\theta=\mu$ and $f_i, g_i, h_i~(i=1,2)$ are positive continuous functions that satisfy some technical conditions, which allow $f_{i}$ behaves in a singular way at $0$ and $g_ih_i$ as a $(p-1)$-superlinear term at $0$ and infinity. The main difficulties in approaching our problem come from its non-variational structure, building ordered sub-supersolutions and from the lack of a well-defined spectral theory. By using appropriate truncation, a generalization of the first eigenvalue in $\mathbb{R}^{N}$ and a priori estimates, we are able to prove our principal results.
报告人简介:周家正,巴西利亚大学,教授,主要从事非线性分析及其应用领域的研究。学术成果主要发表于Z. Angew. Math. Phys. Proc. Edinb. Math. Soc. Commun. Contemp. Math. Proc. Roy. Soc. Edinburgh Sect. A. J. Math. Anal. Appl.等国际知名数学杂志上。
邀请人:非线性分析与PDE团队