当前位置: 首页  学术动态

数学学科离散数学研究所学术报告(张存铨 美国西弗吉尼亚大学)

发布者:戴 情   发布时间:2021-07-03  浏览次数:10

报告题目Some recent progress about Berge-Fulkerson Conjecture, and the Matching Pair Lemma

 张存铨  美国西弗吉尼亚大学 教授

报告时间2021年7月4日 09:00-10:30

报告地点:腾讯会议会议ID:626 237 183

 

摘要:It is conjectured by Berge and Fulkerson that if G is a bridgeless cubic graph, then 2G is 6-edge-colorable. It is evident that we are only interested in snarks for this conjecture.  This talk will survey some recent progress. Most of these progress are based on a technical lemma (an equivalent statement to the conjecture).  The Lemma says: G is Fulkerson colorable if and only if G contains a pair of disjoint matchings M_1, M_2 such that (1) the union of M_1 and M_2 is an even subgraph, (2) for each i=1,2 and for each component Q of G-M_i, either Q is 2-regular or the suppressed cubic graph of Q is 3-edge-colorable.  We will also present an analog of this technical lemma for Fan-Raspaud Conjecture, a weak version of Berge-Fulkerson Conjecture. (Fan and Raspaud conjectured that every bridgeless cubic graph contain three perfect matchings such that no edge is covered by all of them).

 

报告人简介:美国西弗吉尼亚大学数学系教授、博士生导师、eberly杰出教授,主要研究领域为图论和组合数学、离散优化和生物信息学,是享誉盛名的国际图论专家。张存铨教授1986年从加拿大著名的西蒙菲莎大学获得博士学位,1989年以优异的科研成果被破格提前提升为终身副教授。1996年提升为正教授。他曾独立获得八个美国科技基金会等科研基金,是联邦定期资助的唯一主要研究者,屡次获得校方的最佳科研奖。在《Journal of Combinatorial Theory B》、 《Journal of Graph Theory》等国际著名期刊上发表论文一百余篇。他的专著 《Integer Flows and Cycle Covers of Graphs》 和 《Circuit Double Covers of Graphs》在同行中享有极高的评价。

 

邀请人:朱绪鼎