当前位置: 首页  科学研究  学术交流  学术报告

数学学科数学研究所学术报告(饶胜 教授 武汉大学)

发布者:戴 情   发布时间:2022-05-06  浏览次数:10

报告题目On Extension of closed complex (basic) differential forms: Hodge numbers and (transversely) $p$-K\ahler structures

报告人:饶胜 教授武汉大学

报告时间2022510日(周二)1600-1700

报告地点腾讯会议ID:  979-834-366

摘要Inspired by a recent work of Dingchang Wei--Shengmao Zhu on the extension of closed complex differential forms and C. Voisin's usage of the $\partial\bar\partial$-lemma, we obtain several  new  theorems of deformation invariance of Hodge numbers and reprove the local stabilities of $p$-K\ahler structures with the $\partial\bar\partial$-lemma. Our approach more concerns about the $d$-closed extension by means of the exponential operator $e^{\iota_\varphi}$. Furthermore, we prove the local stabilities of transversely $p$-K\ahler structures with mild $\partial\bar\partial$-lemma by adapting the power series method to the foliated case, which strengthens the works of A. El Kacimi Alaoui--B. Gmira and P. Ra\'zny on the local stabilities of transversely ($1$-)K\ahler structures. This talk is based on a joint work with Runze Zhang.

报告人简介:饶胜,武汉大学数学与统计学院教授、博士生导师,2019年获批国家级人才项目,研究方向为多复变与复几何。与人合作在复几何领域多个研究方向得到重要的原创性成果,相关研究成果发表在Invent. Math., JAG, Compositio Math.,  JMPA等著名杂志。

  

邀请人:朱盛茂